Non-noetherian regular rings of dimension 2
نویسندگان
چکیده
منابع مشابه
On co-Noetherian dimension of rings
We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...
متن کاملFixed Subrings of Noetherian Graded Regular Rings
Rings of invariants can have nice homological properties even if they do not have finite global dimension. Watanabe’s Theorem [W] gives conditions when the fixed subring of a commutative ring under the action of a finite group is a Gorenstein ring. The Gorenstein condition was extended to noncommutative rings by a condition explored by Idun Reiten in the 1970s, called k-Gorenstein in [FGR]. Thi...
متن کاملNoetherian Rings—Dimension and Chain Conditions
In this paper we look at the properties of modules and prime ideals in finite dimensional noetherian rings. This paper is divided into four sections. The first section deals with noetherian one-dimensional rings. Section Two deals with what we define a “zero minimum rings” and explores necessary and sufficient conditions for the property to hold. In Section Three, we come to the minimal prime i...
متن کاملon co-noetherian dimension of rings
we define and studyco-noetherian dimension of rings for which the injective envelopeof simple modules have finite krull-dimension. this is a moritainvariant dimension that measures how far the ring is from beingco-noetherian. the co-noetherian dimension of certain rings,including commutative rings, are determined. it is shown that the class ${mathcal w}_n$ of rings with co-noetherian dimension...
متن کاملFully Bounded Noetherian Rings
Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1998
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-98-04480-3